
ON PAIRS OF DIAGONAL QUINTIC FORMS
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Abstract. We demonstrate that a pair of additive quintic equations in at least 34 vari-
ables has a non-trivial integral solution, subject only to an 11-adic solubility hypothesis.
This is achieved by an application of the Hardy-Littlewood method, for which we require
a sharp estimate for a 33.998-th moment of quintic exponential sums. We are able to
employ p-adic iteration in a form that allows the estimation of such a mean value over
a complete unit square, thereby providing an approach that is technically simpler than
those of previous workers and flexible enough to be applied to related problems.

1. Introduction

The application of the Hardy-Littlewood method to simultaneous diagonal equations
provides a rare instance, in the investigation of diophantine equations, in which reasonable
bounds may be established for the number of variables required to guarantee the existence
of non-trivial integral solutions, subject only to local solubility conditions. Beginning with
work of Davenport and Lewis in the 1960s (see [9], [10]), workers have sought to exploit
developments in the circle method to reap improved conclusions for simultaneous diagonal
equations, and especially for pairs of such equations (see in particular [2]–[7] and [12]).
Oftentimes serious technical complications are encountered in such endeavours, and this
discourages widespread use of the new tools. Most recently, Brüdern [3] has investigated
pairs of diagonal cubic equations in 14 variables, developing a p-adic iteration restricted
to minor arcs appropriate to this problem. Formidable technical difficulties permeate the
latter treatment, and the length and complexity of the associated exposition apparently
deterred application of this method to a related problem involving pairs of diagonal quintic
equations (see the preamble to Theorem 3 of Brüdern [4]).

The purpose of this paper is two-fold. On the one hand, we exploit recent mean value
estimates for smooth Weyl sums due to Vaughan and Wooley [17] in an investigation of
the solubility of pairs of diagonal quintic equations. On the other hand, we seek to provide
a flexible alternative to the technically burdensome methods based on p-adic iterations
restricted to minor arcs. Our approach would appear to possess the same power as that
potentially attainable via the latter methods, yet is sufficiently simple that workers might
be tempted to apply it to related problems. In order to be more specific concerning the
central problem of this paper, let c1, . . . , cs and d1, . . . , ds be integers, and consider the
system of equations

c1x
5
1 + · · ·+ csx

5
s = d1x

5
1 + · · ·+ dsx

5
s = 0. (1.1)
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We seek to determine how large s must be to ensure the existence of a non-trivial integral
solution x to this system (that is, a solution x ∈ Zs \ {0}).

Theorem 1. Suppose that s ≥ 34, and that the system (1.1) possesses a non-trivial 11-
adic solution. Then the pair of equations (1.1) possesses a non-trivial integral solution.

One of the first results of this type was obtained by Cook [7], who established without
any local solubility hypothesis that the system (1.1) has non-trivial integral solutions
whenever s ≥ 51. Assuming the 11-adic solubility of the system (1.1), Brüdern [4] (see
Theorem 3) improved this bound to s ≥ 37 by employing mean value estimates of Vaughan
[14]. Although the latter bound could be further sharpened to s ≥ 35 by routinely
exploiting recent work of Vaughan and Wooley [17] concerning Waring’s problem for fifth
powers, the conclusion embodied in Theorem 1 requires an altogether more sophisticated
strategy, and appears to be the best attainable in the current state of technology. We
remark that Cook [8] has shown that the system (1.1) has non-trivial 11-adic solutions
whenever s ≥ 41, and has also shown that when p 6= 11, the existence of non-trivial p-adic
solutions is assured whenever s ≥ 31. Finally, as is mentioned in Atkinson and Cook [1],
it is a simple matter to construct examples of the type (1.1) with s = 30 that fail to
possess non-trivial 11-adic solutions.

In the crudest approaches to problems of the type discussed above, estimates of Weyl-
type for exponential sums compensate for deficiencies in the available mean value esti-
mates, and hence permit an application of the Hardy-Littlewood method via a traditional
division into major and minor arcs. When such an approach fails, recent “efficient dif-
ferencing” methods for estimating mean values of exponential sums over complete unit
intervals sometimes fail to establish the desired conclusion by only the narrowest of mar-
gins. Efficient differencing may nonetheless be attempted in such situations, but now
one seeks to restrict the mean value to a set of minor arcs. First applied by Vaughan
[13] in work on sums of cubes, it is this approach that Brüdern applies in his impressive
tour-de-force [3] devoted to pairs of diagonal cubic equations. Such a strategy entails
laboriously tracking the whereabouts of the minor arcs through myriad changes of vari-
able, and requires an arsenal of precise estimates essential for delicate pruning analyses.
Instead of diving into the technical morass of differencing on minor arcs, we exploit the
marginal failure of conventional efficient differencing through an alternative mechanism.
Given a pair of equations (1.1) in 34 variables, we apply an efficient differencing process
to a mean value, over the complete unit square, involving a 33.998th moment of quintic
exponential sums. Drawing inspiration from work of Wooley [19] devoted to fractional
moments of smooth Weyl sums, this task proves to be relatively straightforward. Our
estimate for this mean value scarcely misses the expected (best possible) upper bound,
and moreover a small fraction of an exponential sum remains with which to gain addi-
tional cancellation on the minor arcs. Indeed, equipped with the fractional moment just
alluded to (see Theorem 2.1 below), it now suffices to apply a crude approach similar to
that discussed earlier. We emphasise here the overwhelming simplifications achieved by
integrating over a complete unit square in the differencing process, and those achieved by
aiming for a slightly imprecise upper bound, over the corresponding complex and delicate
analysis required by restricting oneself to minor arcs (as in Brüdern [3]).

We begin by establishing our fundamental mean value estimate in §2 using the ideas
alluded to above. In §3, we make some simplifying reductions and then describe our
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approach to the theorem via the Hardy-Littlewood method. With the mean value estimate
of §2 in hand, we are able to deal with the minor arcs in a routine manner in §4. As we
are forced to handle a relatively thick set of major arcs, the pruning operation undertaken
in §5 is not without its technical hurdles. Yet, once these obstacles have been negotiated,
we are able to perform the usual end-game analysis in §6 with few unexpected difficulties.

Throughout, the letter ε denotes a sufficiently small positive number. We take P to
be the basic parameter, and this is always presumed sufficiently large in terms of ε. The
implicit constants in Vinogradov’s well-known notation, � and �, depend on ε and
the coefficients of implicit diophantine equations, unless otherwise indicated. When π
is a prime number, we write πh‖n to denote that πh|n but πh+16 |n. Finally, we adopt
the convention that whenever ε appears in a statement, either implicitly or explicitly,
then we assert that the statement holds for each ε > 0. Note that the “value” of ε
may consequently change from statement to statement, and hence also the dependence of
implicit constants on ε.

2. An Auxiliary Mean Value Estimate

The relative ease with which we establish the central conclusion of this paper is a
consequence of a sharp estimate for a certain fractional moment of quintic Weyl sums.
By employing an efficient differencing process related to that applied in Wooley [19], we
are able to difference four complete Weyl sums in a mean value including somewhat fewer
than 34 exponential sums. Before describing our conclusions in detail, we require some
notation.

Consider fixed integers A, B, a, b, c and d with the property that A > 0, B > 0, ad 6= 0
and ad− bc 6= 0. We take η to be a small positive number, and P to be a positive number
sufficiently large in terms of η, A, B, a, b, c and d. Write

M = P 7/41, Q = PM−1, H = PM−5 and R = P η. (2.1)

As usual, we write e(z) for e2πiz. When k is a natural number, we write

Fk(θ) =
∑

1≤x≤P
(x,k)=1

e(θx5). (2.2)

Also, when X and Y are positive numbers, we define the set of Y -smooth numbers not
exceeding X by

A(X, Y ) = {n ∈ [1, X] ∩ Z : p|n⇒ p ≤ Y },
and then define

f(θ) =
∑

y∈A(Q,R)

e(θy5). (2.3)

When (α, β) ∈ [0, 1]2, it is convenient to define Λ1 = Λ1(α, β) and Λ2 = Λ2(α, β) by
Λ1 = aα + bβ and Λ2 = cα + dβ. Finally, for 0 ≤ t ≤ 1, we define the exponential sum

Ft(α, β) =
∑

M<p≤2M
p≡−1 (mod 5)

|Fp(Aα)Fp(Bβ)|2|f(Λ1p
5)f(Λ2p

5)|15−t, (2.4)

where here and throughout, the letter p denotes a prime number.
Our objective in this section is the proof of the estimate contained in the following

theorem.
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Theorem 2.1. Suppose that t is a real number with 0 ≤ t ≤ 10−3. Then whenever η > 0
is sufficiently small, one has for each positive number ε the estimate∫∫

[0,1]2

Ft(α, β) dα dβ �MP ε−6Q30−2t.

Before launching our proof of Theorem 2.1, it is useful to establish some preliminary
estimates that ease our subsequent discussion. We begin by recalling some mean value
estimates of Vaughan and Wooley [17].

Lemma 2.2. When s = 7, 8, 9, one has∫ 1

0

|f(θ)|2s dθ � Q2s−5+∆s ,

where ∆7 = 0.272729, ∆8 = 0.077363 and ∆9 = 0.

Proof. These estimates are immediate from the tables on page 236 of [17]. �

Following the execution of our differencing procedure, we obtain the exponential sum

G1(θ; p;C) = p−5

p5∑
`=1

∣∣∣∣Fp(C(θ + `)

p5

)∣∣∣∣2 . (2.5)

We require an estimate for the related exponential sum

F ∗1 (θ) =
∑

M<p≤2M
p≡−1 (mod 5)

|G1(θ; p;C)|2, (2.6)

valid for C = A or B, and valid uniformly for θ ∈ [0, 1). In order to describe this estimate,
we require some further notation. We put c = 106 max{A,B} and then define the set of
major arcs M to be the union of the intervals

M(q, r) = {θ ∈ [0, 1) : |qθ − r| ≤ c−1PQ−5},

with 0 ≤ r ≤ q ≤ c−1P and (r, q) = 1. We also set m = [0, 1) \M. We write

Φ(z, h, p) = p−5((z + hp5)5 − (z − hp5)5),

and then define

τ(q, r, h, p) =

∣∣∣∣∣
q∑

w=1

e

(
r

q
Φ(w, h, p)

)∣∣∣∣∣ .
Also, we define the function ∆C(θ) for θ ∈ [0, 1) by taking

∆C(θ) =
∑

M<p≤2M

( ∑
1≤h≤H

Pq−1τ(q, Cr, h, p)

(1 + |θ − r/q|hP 4)1/4

)2

,

when θ ∈M(q, r) ⊆M, and otherwise by taking ∆C(θ) = 0.

Lemma 2.3. When C = A or B, the estimate F ∗1 (θ)� P 2+εM + ∆C(θ) holds uniformly
for θ ∈ [0, 1).
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Proof. Suppose that C is either A or B, and let p be a prime number satisfying M < p ≤
2M and p ≡ −1 (mod 5). Then in view of (2.1), and our assumption that P is sufficiently
large in terms of A and B, one has p > max{A,B}, whence p does not divide AB. Then
we may apply the argument on page 46 of Vaughan and Wooley [16], leading to equation
(4.14) of that paper, to conclude that

|G1(θ; p;C)| � P + |Gp(Cθ)|, (2.7)

where
Gp(ξ) =

∑
1≤h≤Pp−5

∑
hp5<z≤2P−hp5
z≡h (mod 2)

e(2−5ξΦ(z, h, p)). (2.8)

Further, on applying Lemma 4.1 of Vaughan and Wooley [16], we derive the estimate

|G1(θ; p;C)| � P + (logP )G∗p(Cθ), (2.9)

where

G∗p(ξ) =
∑

1≤h≤H

sup
γ∈[0,1]

∣∣∣∣∣ ∑
1≤z≤2P

e(2−5ξΦ(z, h, p) + γz)

∣∣∣∣∣ . (2.10)

We first obtain an estimate of major arc type for the exponential sum defined in (2.8).
By applying essentially the same van der Corput analysis as was used in the proof of
Lemma 4.7 of Vaughan and Wooley [17], one finds that when C = A or B, and θ ∈
M(q, r) ⊆M, one has

|Gp(Cθ)| �
∑

1≤h≤H

Pq−1τ(q, Cr, h, p)

(1 + |θ − r/q|hP 4)1/4
+Hq3/4+ε. (2.11)

Here we note that the restrictions on the variable z imposed in (2.8) are easily accom-
modated within the latter argument (the reader may wish to compare the situation here
with that in the proof of Lemma 4.3 of Vaughan and Wooley [16]). On recalling (2.7), we
therefore conclude from (2.1), (2.6) and (2.11) that whenever θ ∈M one has

F ∗1 (θ)� ∆C(θ) +M(P +HP 3/4+ε)2 � ∆C(θ) + P 2M. (2.12)

We next observe that one may treat the exponential sum

F+
1 (θ) =

∑
M<p≤2M

|G∗p(Cθ)|2 (2.13)

by using a refined differencing argument similar to that applied in §§2 and 3 of Vaughan
[14] to the exponential sum

F1(θ) =
∑

M<m≤MR

∑
1≤h≤H

∑
1≤z≤2P

e(θΦ(z, h,m)).

Following an application of Cauchy’s inequality, the differencing process removes the
implicit supremum over γ in (2.10) and hence gives the bound

F+
1 (θ)� H

∑
M<p≤2M

∑
1≤h≤H

∑
0≤h2≤2P

∣∣∣∣∣ ∑
1≤z≤2P−h2

e(2−5CθΦ1(z, h, h2, p))

∣∣∣∣∣ ,
where

Φ1(z, h, h2, p) = Φ(z + h2, h, p)− Φ(z, h, p).



6 S. T. PARSELL AND T. D. WOOLEY

Thus, in a manner resembling the derivation of equation (2.37) of Vaughan [14], and
imitating the argument leading to equation (3.1) and Lemmata 3.1 and 3.2 of Vaughan
[14], we obtain

F+
1 (θ)�MH2P 3/2 +M1/2H3/2P 1/2|F+

3 (θ)|1/2, (2.14)

where F+
3 (θ) is bounded in the shape

|F+
3 (θ)|2 ≤ D(θ)E(θ) (2.15)

for certain exponential sums D(θ) and E(θ). Here, it suffices for us to note that whenever
|θ − r/q| ≤ q−2 and (r, q) = 1, the exponential sum D(θ) satisfies

D(θ)� P ε

(
P 4H

q +Q5|qθ − r|
+ P 3H + q +Q5|qθ − r|

)
, (2.16)

and, whenever M5 ≤ X ≤ Q5M−5, (r, q) = 1, q ≤ X and |θ − r/q| ≤ q−1X−1, the
exponential sum E(θ) satisfies

E(θ)� P ε

(
P 2HM2

(q +Q5|qθ − r|)1/5
+ P 2HM

)
. (2.17)

We remark here that the constant C in (2.13) is absorbed within the argument of the
proofs of Lemmata 3.1 and 3.2 of Vaughan [14].

Suppose that θ ∈ m. By Dirichlet’s Theorem, we may choose r ∈ Z and q ∈ N with
(r, q) = 1, q ≤ cP−1Q5 and |qθ−r| ≤ c−1PQ−5. By the definition of m, one has q > c−1P ,
and so it follows from (2.1) and (2.15)–(2.17) that

|F+
3 (θ)| � P ε(P 3H + P−1Q5)1/2(P 9/5HM2 + P 2HM)1/2 � P 5/2+εHM1/2,

whence by (2.14),

sup
θ∈m

F+
1 (θ)� P 3/2MH2 + P 7/4+εM3/4H2 � P 7/4+εM3/4H2.

In view of (2.6), (2.9), and (2.13), we therefore deduce that

sup
θ∈m

F ∗1 (θ)� P 2M + P 7/4+εM3/4H2,

whence by (2.1) we obtain
sup
θ∈m

F ∗1 (θ)� P 2+εM. (2.18)

The conclusion of the lemma is immediate on combining (2.12) and (2.18). �

We augment the previous estimates with a final mean value estimate that provides, in
essence, a major arc bound.

Lemma 2.4. Suppose that u ≥ 5/2 and C = A or B. Then one has∫ 1

0

|∆C(θ)|u dθ � P ε(P 2H2M)uQ−5.

Proof. This estimate follows by applying the argument of the proof of Lemma 4.10 of
Vaughan and Wooley [17]. One has merely to note that the function ∆C(θ) defined above
carries all the variables save p with twice the weight appearing in the corresponding
expression in the latter lemma, and that the constant C affects only the implicit constant
in the claimed upper bound. �
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The moment has arrived to unleash our forces on the proof of Theorem 2.1. We begin
by extracting the efficient difference, and here we follow a routine originating in work of
Vaughan [13] and applied in a situation similar to that at hand in Wooley [19]. Suppose
initially that p is a fixed prime number with M < p ≤ 2M and p ≡ −1 (mod 5). Write

Lt(p) =

∫∫
[0,1]2

|Fp(Aα)Fp(Bβ)|2|f(Λ1p
5)f(Λ2p

5)|15−tdα dβ.

By a change of variable, one finds that

Lt(p) = p−10

∫∫
[0,p5]2

|Fp(Aαp−5)Fp(Bβp
−5)|2|f(Λ1)f(Λ2)|15−tdα dβ.

But Λ1(α, β) and Λ2(α, β) are linear forms in α and β with integral coefficients, so by the
periodicity modulo 1 of f(θ) with respect to θ, one finds that

Lt(p) = p−10

p5∑
u=1

p5∑
v=1

∫∫
[0,1]2

∣∣∣∣Fp(A(α + u)

p5

)
Fp

(
B(β + v)

p5

)∣∣∣∣2 |f(Λ1)f(Λ2)|15−tdα dβ

=

∫∫
[0,1]2

G1(α; p;A)G1(β; p;B)|f(Λ1)f(Λ2)|15−tdα dβ, (2.19)

where G1(θ; p;C) is the exponential sum defined in (2.5).
Observe next that on recalling (2.6), an application of Cauchy’s inequality reveals that∑

M<p≤2M
p≡−1 (mod 5)

G1(α; p;A)G1(β; p;B) ≤ (F ∗1 (α)F ∗1 (β))1/2.

By Lemma 2.3, therefore, we deduce that∑
M<p≤2M

p≡−1 (mod 5)

G1(α; p;A)G1(β; p;B)� (P 2+εM + ∆A(α))1/2(P 2+εM + ∆B(β))1/2.

Thus, on substituting into (2.19) and recalling (2.4), we conclude that∫∫
[0,1]2

Ft(α, β) dα dβ � P 2+εMI1 + P 1+εM1/2(I2 + I3) + I4, (2.20)

where

I1 =

∫∫
[0,1]2

|f(Λ1)f(Λ2)|15−t dα dβ, (2.21)

I2 =

∫∫
[0,1]2

∆A(α)1/2|f(Λ1)f(Λ2)|15−t dα dβ, (2.22)

I3 =

∫∫
[0,1]2

∆B(β)1/2|f(Λ1)f(Λ2)|15−t dα dβ, (2.23)
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and

I4 =

∫∫
[0,1]2

∆A(α)1/2∆B(β)1/2|f(Λ1)f(Λ2)|15−t dα dβ. (2.24)

The integral I1 is easily disposed of by an application of Lemma 2.2. Since the linear
forms Λ1 and Λ2 are linearly independent, we may combine a non-singular change of
variables in (2.21) with Hölder’s inequality to deduce that

I1 �
∫∫

[0,1]2

|f(ξ)f(ζ)|15−t dξ dζ ≤
(∫ 1

0

|f(α)|14dα

)1+t(∫ 1

0

|f(β)|16dβ

)1−t

�
(
Q9.272729

)1+t(
Q11.077363

)1−t
.

Consequently, on recalling our assumption that 0 ≤ t ≤ 10−3, we find that

I1 � Q20.3503−2t. (2.25)

We estimate the integral I2 by applying Hölder’s inequality once more. Thus, from
(2.22) we obtain

I2 �
(

sup
(α,β)∈[0,1]2

|f(Λ1)|
)3/5−t

I
1/5
5 I

(3−5t)/10
6 I

(1+t)/2
7 , (2.26)

where

I5 =

∫∫
[0,1]2

∆A(α)5/2|f(Λ2)|16 dα dβ, (2.27)

I6 =

∫∫
[0,1]2

|f(Λ1)18f(Λ2)16| dα dβ and I7 =

∫∫
[0,1]2

|f(Λ1)18f(Λ2)14| dα dβ.

By a change of variables, we again deduce from Lemma 2.2 that

I6 �
(∫ 1

0

|f(α)|18dα

)(∫ 1

0

|f(β)|16dβ

)
� Q24.077363 (2.28)

and

I7 �
(∫ 1

0

|f(α)|18dα

)(∫ 1

0

|f(β)|14dβ

)
� Q22.272729. (2.29)

Also, by another change of variable, our assumption that d 6= 0 leads to the identity∫ 1

0

|f(Λ2)|16dβ =

∫ 1

0

|f(dβ)|16dβ =

∫ 1

0

|f(β)|16dβ.

Thus we deduce from (2.27) and Lemmata 2.2 and 2.4 that

I5 � Q11.077363

∫ 1

0

∆A(α)5/2dα� P ε(P 2H2M)5/2Q6.077363. (2.30)

On substituting (2.28)–(2.30) into (2.26), and employing a trivial estimate for f(Λ1), we
find that

I2 � P ε(P 2H2M)1/2Q20.17515−2t. (2.31)

Here again we make use of the assumption that 0 ≤ t ≤ 10−3.
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Plainly, on interchanging the roles of α and β, and of A and B, in (2.23), the argument
applied in the previous paragraph establishes in like manner that

I3 � P ε(P 2H2M)1/2Q20.17515−2t. (2.32)

Finally, applying Hölder’s inequality yet again, we find from (2.24) that

I4 �
(

sup
(α,β)∈[0,1]2

|f(Λ1)f(Λ2)|
)3/5−t

I
1/5
8 I

4/5
9 , (2.33)

where

I8 =

∫∫
[0,1]2

(
∆A(α)∆B(β)

)5/2
dα dβ and I9 =

∫∫
[0,1]2

|f(Λ1)f(Λ2)|18 dα dβ.

By a change of variables, Lemma 2.2 on this occasion leads to the estimate

I9 �
(∫ 1

0

|f(α)|18dα

)(∫ 1

0

|f(β)|18dβ

)
� Q26. (2.34)

On the other hand, by Lemma 2.4, one has

I8 �
(
P ε(P 2H2M)5/2Q−5

)2 � P ε(P 2H2M)5Q−10. (2.35)

Thus, on substituting (2.34) and (2.35) into (2.33), we arrive at the estimate

I4 � P 2+εH2MQ20−2t. (2.36)

We now combine the estimates (2.25), (2.31), (2.32), (2.36) and (2.20) to find that∫∫
[0,1]2

Ft(α, β) dα dβ � P 2+εM
(
Q20.3503−2t +HQ20.17515−2t +H2Q20−2t

)
.

On recalling (2.1), the desired conclusion∫∫
[0,1]2

Ft(α, β) dα dβ �MP ε−6Q30−2t

follows with a modicum of computation.

Before departing this section, we record a further auxiliary estimate of use in the pruning
argument described in §5. As an analogue of the exponential sum Ft(α, β) defined in (2.4),
we now write

F̂t(α, β) =
∑

M<p≤2M
p≡−1 (mod 5)

|Fp(Aα)|2|f(Λ1p
5)f(Λ2p

5)|15−t. (2.37)

Lemma 2.5. Suppose that t is a real number with 0 ≤ t ≤ 10−3. Then whenever η > 0
is sufficiently small, one has the estimate∫∫

[0,1]2

F̂t(α, β)dα dβ � PMQ20.3517−2t.
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Proof. We apply the argument underlying the proof of Theorem 2.1, making simple mod-
ifications as needed. Suppose first that p is a fixed prime number with M < p ≤ 2M and
p ≡ −1 (mod 5), and write

L̂t(p) =

∫∫
[0,1]2

|Fp(Aα)|2|f(Λ1p
5)f(Λ2p

5)|15−tdα dβ.

As in the argument leading to (2.19), a change of variables leads to the identity

L̂t(p) =

∫∫
[0,1]2

G1(α; p;A)|f(Λ1)f(Λ2)|15−tdα dβ. (2.38)

But an application of Cauchy’s inequality reveals that∑
M<p≤2M

p≡−1 (mod 5)

G1(α; p;A) ≤M1/2F ∗1 (α)1/2,

whence by Lemma 2.3 we obtain∑
M<p≤2M

p≡−1 (mod 5)

G1(α; p;A)� P 1+εM +M1/2∆A(α)1/2.

On substituting into (2.38) and recalling (2.37), we deduce that∫∫
[0,1]2

F̂t(α, β)dα dβ � P 1+εMI1 +M1/2I2,

where I1 and I2 are defined, respectively, in (2.21) and (2.22). We therefore conclude from
(2.25) and (2.31) that∫∫

[0,1]2

F̂t(α, β)dα dβ � P 1+εMQ20.3503−2t + P 1+εHMQ20.17515−2t.

The conclusion of the lemma now follows from (2.1) with a smidgen of computation. �

3. Preliminaries to an Application of the Circle Method

Before applying the circle method to prove Theorem 1, we need to eliminate some
relatively simple cases. First of all, we may clearly suppose in (1.1) that for each i at least
one of ci or di is non-zero. Further, we may assume that s = 34, since any superfluous
variables may either be set to zero at the outset, or otherwise specialised so as to preserve
11-adic solubility. Next we need some information about the number of distinct coefficient
ratios ci/di present in (1.1).

Lemma 3.1. If there is an extended real number r such that ci/di = r for 16 or more
values of i, then the system (1.1) has a non-trivial integral solution.
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Proof. If some ratio r is repeated 16 or more times, then we may assume by relabelling
that ci/di = r for 1 ≤ i ≤ 16. But then by taking a linear combination of the two
equations, we find that the system (1.1) is equivalent to the new system

c1x
5
1 + · · ·+ c17x

5
17 + · · ·+ c34x

5
34 = 0,

D17x
5
17 + · · ·+D34x

5
34 = 0,

(3.1)

where Di = d1ci − c1di for 17 ≤ i ≤ 34. From Gray [11], one knows that for every prime
p, any diagonal quintic equation in 16 or more variables necessarily possesses non-trivial
p-adic solutions. It therefore follows from the fifth power technology of Vaughan and
Wooley [17] that a single additive equation in 17 or more variables is non-trivially soluble
over the integers. Thus we can find y17, . . . , y34 ∈ Z, not all zero, such that

D17y
5
17 + · · ·+D34y

5
34 = 0.

Moreover, if we let C17 = c17y
5
17 + · · · + c34y

5
34, then we can find integers z1, . . . , z17, not

all zero, satisfying
c1z

5
1 + · · ·+ c16z

5
16 + C17z

5
17 = 0,

and it is easy to see that x = (z1, . . . , z16, z17y17, . . . , z17y34) is a non-trivial solution of
(3.1). This completes the proof of the lemma. �

For each i, write ri = ci/di. In view of the conclusion of Lemma 3.1, we may suppose
that there are at least three distinct values among r1, . . . , r34. We may therefore rearrange
variables in such a way that r1 6= r2 and r3 6= r4. Since we then have c1d2 6= c2d1, it follows
by taking linear combinations of the two equations that (1.1) is equivalent to a system of
the form

c1x
5
1 + c3x

5
3 + c4x

5
4 + · · ·+ c34x

5
34 = 0,

d2x
5
2 + d3x

5
3 + d4x

5
4 + · · ·+ d34x

5
34 = 0,

where c1d2 6= 0. We therefore assume from now on that c2 = d1 = 0. After replacing one
or both of x1 and x2 by −x1 and −x2, if necessary, we may further assume that c1 > 0
and d2 > 0.

In our application of the circle method, we will be concerned with the linear forms

γi = ciα + diβ (1 ≤ i ≤ 34).

Suppose that 1 ≤ i < j ≤ 4 and 5 ≤ k ≤ 34. It is clear that whenever ri 6= rj we can
write

γk = ukγi + vkγj (3.2)

for some uk, vk ∈ Q, but we would often prefer to be able to take uk, vk ∈ Z. To this end,
we write

D =
∏

1≤i<j≤4
ri 6=rj

|cidj − cjdi|

and make the change of variables xk → Dxk (5 ≤ k ≤ 34). Then we may replace the
coefficients ck and dk by D5ck and D5dk, and this ensures that in (3.2), one may take
uk, vk ∈ Z.

Finally, we need to consider some local solubility issues. Since r1 6= r2, the linear system

c1z1 + · · ·+ c34z34 = d1z1 + · · ·+ d34z34 = 0 (3.3)
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has a 32-dimensional space of real solutions. But for each i, the space of solutions with
zi = 0 has dimension 31, since there are at least three distinct values among r1, . . . , r34.
Hence there is a real solution (z1, . . . , z34) to (3.3) with no zi equal to zero, and a real
solution η = (η1, . . . , η34) to (1.1) is now obtained by taking fifth roots. Moreover, by
replacing xi by −xi if necessary, and hence (ci, di) by (−ci,−di), we may assume that
ηi > 0 for each i, and by homogeneity we may further assume that ηi < 1 for each i.
Notice that our earlier assumption that c1 > 0 and d2 > 0 may be preserved here by
replacing (c,d) by (±c,±d), for a suitable choice of signs. Clearly, such an η provides a
non-singular real solution to the system (1.1).

With regard to p-adic solubility, we know from work of Cook [8] that the system (1.1)
has a non-trivial p-adic solution whenever p 6= 11. Since 11-adic solubility is imposed as
a hypothesis in Theorem 1, we may henceforth assume that (1.1) has a non-trivial p-adic
solution for each prime p. Moreover, the argument of Davenport and Lewis [9], pages
114–115, shows that the latter implies the existence of a non-singular p-adic solution for
each prime p, provided that every form in the pencil of the two forms in (1.1) explicitly
contains at least 16 variables. However, if this latter hypothesis fails to hold, then a
simplified version of the argument used in the proof of Lemma 3.1 may be applied to
produce a non-trivial rational solution to the system (1.1).

For future reference, we summarize the results of this section so far in the following
lemma.

Lemma 3.2. Suppose that the conclusion of Theorem 1 holds when all of the conditions
(i)-(iv) below are satisfied. Then the theorem holds in general.

(i) One has s = 34, c2 = d1 = 0, c1, d2 > 0, and c3d4 − c4d3 6= 0.
(ii) Each distinct ratio ri = ci/di (in the extended real numbers) occurs for at most 15

different indices i.
(iii) For each k with 5 ≤ k ≤ 34 and all i and j with 1 ≤ i < j ≤ 4 and ri 6= rj, there

exist integers uk and vk such that γk = ukγi + vkγj.
(iv) The system (1.1) has a non-singular p-adic solution for every prime p and a non-

singular real solution η with 0 < ηi < 1 for each i.

Assuming from now on that conditions (i)–(iv) of Lemma 3.2 are satisfied, we are now
ready to describe our strategy for proving Theorem 1. Recall the definitions of Fp(θ) and
f(θ) from (2.2) and (2.3). When B is any measurable subset of the unit square [0, 1)2,
define

N (B) =
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

Fp(γ1) · · ·Fp(γ4)f(p5γ5) · · · f(p5γ34) dα dβ. (3.4)

Further, let N(P ) denote the number of solutions of the system

c1x
5
1 + · · ·+ c4x

5
4 + p5(c5y

5
5 + · · ·+ c34y

5
34) = 0,

d1x
5
1 + · · ·+ d4x

5
4 + p5(d5y

5
5 + · · ·+ d34y

5
34) = 0,

(3.5)

with

1 ≤ xi ≤ P (1 ≤ i ≤ 4), yj ∈ A(Q,R) (5 ≤ j ≤ 34),

M < p ≤ 2M, (p, x1x2x3x4) = 1 and p ≡ −1 (mod 5).
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Notice that by orthogonality one has N(P ) = N ([0, 1)2). We aim to establish the expected
lower bound N(P ) � MP−6Q30(logP )−1 by an application of the Hardy-Littlewood
method. Since every solution of (3.5) automatically satisfies (1.1), this conclusion suf-
fices to prove Theorem 1. We complete our initial skirmishing by describing the Hardy-
Littlewood dissection underlying our application of the circle method. Write δ = 1/100,
and define the major arcs M to be the union of the intervals

M(q, a, b) = {(α, β) ∈ [0, 1)2 : |qα− a| ≤ P δQ−5 and |qβ − b| ≤ P δQ−5}, (3.6)

with 0 ≤ a, b ≤ q ≤ P δM5 and (q, a, b) = 1. It is clear from (2.1) that these intervals are
pairwise disjoint. Further, write m = [0, 1)2\M for the minor arcs. We remark, as will
become apparent in due course, that while this set-up allows the minor arcs to be handled
rather easily, the treatment of the major arcs entails a non-trivial pruning process.

4. The Minor Arcs

The estimation of the minor arc contribution N (m) is easily accomplished with the aid
of Theorem 2.1, and so we sally towards the desired estimate

N (m)�MQ30P−6−ν , (4.1)

for some positive number ν, without further comment. First of all, it is easy to deduce
from condition (ii) of Lemma 3.2 that there is a partition P of the set {5, 6, 7, . . . , 34}
into 15 two-element blocks, with the property that {k, `} ∈ P ⇒ rk 6= r`. Hence by using
the trivial inequality

|z1 · · · zn| ≤ |z1|n + · · ·+ |zn|n,
one finds that

|f(p5γ5) · · · f(p5γ34)| ≤
∑

5≤k<`≤34
rk 6=r`

|f(p5γk)f(p5γ`)|15.

It therefore follows from (3.4) that for some k and ` with rk 6= r` one has

N (m)�
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
m

|Fp(γ1) · · ·Fp(γ4)||f(p5γk)f(p5γ`)|15dα dβ,

and, by interchanging the roles of k and ` if necessary, we may suppose that ckd` 6= 0.
When B ⊆ [0, 1)2 and t is a real number with 0 ≤ t ≤ 1, write

N0,t(B) =
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

|Fp(γ1)Fp(γ2)|2|f(p5γk)f(p5γ`)|15−tdα dβ (4.2)

and

N1,t(B) =
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

|Fp(γ3)Fp(γ4)|2|f(p5γk)f(p5γ`)|15−tdα dβ. (4.3)

Then after two applications of the Cauchy-Schwarz inequalities, we find that

N (m)� N0,0(m)1/2N1,0([0, 1)2)1/2. (4.4)

Now by condition (iii) of Lemma 3.2 we can write

γk = ukγ3 + vkγ4 and γ` = u`γ3 + v`γ4
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for some integers uk, vk, u` and v`. Moreover, a simple calculation shows that

ukv` − vku` =
ckd` − dkc`
c3d4 − d3c4

6= 0,

so that on making the change of variables (α, β)→ (γ3, γ4) in (4.3), we find that Theorem
2.1 applies (with t = 0) to show that

N1,0([0, 1)2)�MQ30P ε−6. (4.5)

It therefore suffices to bound N0,0(m), and for this we require an estimate of Weyl-type.
Although bounds of somewhat higher quality may be obtained by working harder, the
following estimate is adequate for the purpose at hand.

Lemma 4.1. For every integer p with M < p ≤ 2M , one has

sup
(α,β)∈m

|f(p5γk)f(p5γ`)| � Q2−σ,

where σ = 3× 10−5.

Proof. Suppose that (α, β) ∈ m. By Dirichlet’s Theorem, there exist integers ak, a`, qk
and q` satisfying (qk, ak) = (q`, a`) = 1,

1 ≤ qk, q` ≤ Q5P−δ/2, |p5γkqk − ak| ≤ P δ/2Q−5 and |p5γ`q` − a`| ≤ P δ/2Q−5.

On applying Lemma 3.1 of Wooley [20], and making use of Lemma 2.2 above, one obtains
the estimate

|f(p5γi)| � Q1+ε(q−1
i +Q−5/2 + qiQ

−5)1/162 (i = k, `). (4.6)

Write
∆ = ckd` − c`dk and C = 8(|ck|+ |c`|)(|dk|+ |d`|)|∆|.

If qk > C−1P δ/2 or q` > C−1P δ/2, then the lemma follows at once from (4.6). Suppose,
on the other hand, that qk ≤ C−1P δ/2 and q` ≤ C−1P δ/2, and write q = |∆|qkq`p5. Then
since

α = ∆−1(γkd` − γ`dk) and β = ∆−1(ckγ` − c`γk),
we find that

‖qα‖ = ‖qkq`p5(γkd` − γ`dk)‖ ≤ |d`|q`‖qkp5γk‖+ |dk|qk‖q`p5γ`‖ ≤ P δQ−5,

and similarly for ‖qβ‖. Thus, on noting that q ≤ P δM5, we obtain a contradiction to our
assumption that (α, β) ∈ m, and this completes the proof of the lemma. �

We can now complete our analysis of the minor arcs. Let t and σ be positive numbers
with t ≤ 10−3 and σ ≤ 3 × 10−5. By applying Theorem 2.1 and Lemma 4.1, one finds
that

N0,0(m)�
(

max
M<p≤2M

sup
(α,β)∈m

|f(p5γk)f(p5γ`)|
)t

×
∫∫

[0,1]2

∑
M<p≤2M

p≡−1 (mod 5)

|Fp(γ1)Fp(γ2)|2|f(p5γk)f(p5γ`)|15−tdα dβ

� Qt(2−σ)MQ30−2tP ε−6.



ON PAIRS OF DIAGONAL QUINTIC FORMS 15

Thus we obtain

N0,0(m)�MQ30P−6−τ , (4.7)

for some positive number τ , and on recalling (4.4) and (4.5), one arrives at the desired
conclusion (4.1).

5. Pruning the Major Arcs

Although we have precise knowledge concerning the asymptotic behavior of the ex-
ponential sums Fp(γi) throughout the set of major arcs defined by (3.6), such detailed
information for the sums f(p5γi) is currently available only on a much thinner set. We
must therefore perform a substantial amount of pruning. Specifically, we let L = (logP )δ,
and define N to be the union of the intervals

N(q, a, b) = {(α, β) ∈ [0, 1)2 : |α− a/q| ≤ LP−5 and |β − b/q| ≤ LP−5}, (5.1)

with 0 ≤ a, b ≤ q ≤ L and (q, a, b) = 1. Also, we take n = [0, 1)2\N. We aim to show
that

N (M\N)�MP−6Q30(logP )−1−τ (5.2)

for some positive number τ . In order to establish this bound, we first apply Cauchy’s
inequality as in the argument at the beginning of §4, thereby obtaining

N (M\N)� N0,0(M\N)1/2N1,0([0, 1)2)1/2,

where N0,t and N1,t are defined as in (4.2) and (4.3), and where the indices k and `
occurring in those definitions satisfy rk 6= r`. But by making the change of variables
(α, β)→ (γ3, γ4) in (4.3), just as in the argument leading to (4.5), we find thatN1,0([0, 1)2)
is transformed into a mean value of the shape (4.2), and moreover the coefficients of the
generating functions in this new mean value satisfy the same hypotheses as those imposed
on the corresponding coefficients in (4.2). With a modicum of contemplation, therefore,
one finds that whenever one can establish the estimates

N0,0([0, 1)2)�MP−6Q30(logP )−1 and N0,0(M\N)�MP−6Q30(logP )−1−τ , (5.3)

for some positive number τ , with sufficient uniformity in the underlying coefficients, then
the estimate

N1,0([0, 1)2)�MP−6Q30(logP )−1,

and hence also (5.2), will follow immediately. In the remainder of this section we estab-
lish the desired estimates (5.3) with the claimed uniformity, and hence achieve the hard
pruning required to complete the analysis of the major arcs.

We begin by considering the major arc approximations to the functions Fp(γi), and this
requires some notation. When 1 ≤ i ≤ 34, write

Si(q, a, b) =

q∑
r=1

e((cia+ dib)r
5/q), (5.4)

Si(q, a, b; p) = Si(q, a, b)− p−1Si(q, ap
5, bp5), (5.5)

and

vi(ξ, ζ;B) =

∫ B

0

e((ciξ + diζ)γ5) dγ. (5.6)
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We define the function Ξi(p) = Ξi(α, β; p) for (α, β) ∈ [0, 1)2 by taking

Ξi(α, β; p) = q−1Si(q, a, b; p)vi(α− a/q, β − b/q;P ),

when (α, β) ∈M(q, a, b) ⊆M, and otherwise by taking Ξi(α, β; p) = 0.

Lemma 5.1. When p is an integer with M < p ≤ 2M and (α, β) ∈M(q, a, b) ⊆M, one
has

|Fp(γi)− Ξi(α, β; p)| � qε(q + P 5|qα− a|+ P 5|qβ − b|)1/2.

Proof. When (α, β) ∈M(q, a, b) ⊆M and M < p ≤ 2M , it follows from Theorem 4.1 of
Vaughan [15] that

Fp(γi) =
∑

1≤x≤P

e((ciα + diβ)x5)−
∑

1≤y≤P/p

e(p5(ciα + diβ)y5)

= q−1Si(q, a, b)vi(α− a/q, β − b/q;P )

− q−1Si(q, ap
5, bp5)vi(p

5(α− a/q), p5(β − b/q);P/p)
+O(qε(q + P 5|qα− a|+ P 5|qβ − b|)1/2).

But a change of variables demonstrates that

vi(p
5ξ, p5ζ;B) = p−1vi(ξ, ζ; pB), (5.7)

and the lemma now follows on recalling (5.5). �

As our first step in the pruning procedure, we replace the exponential sums Fp(γi) by
their major arc approximations Ξi(α, β; p). In this context, when t is a real number with
0 ≤ t ≤ 1 and B ⊆ [0, 1)2, we write

N ∗0,t(B) =
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

|Ξ1(α, β; p)Ξ2(α, β; p)|2|f(p5γk)f(p5γ`)|15−tdα dβ.

Lemma 5.2. Suppose that t is a real number with 0 ≤ t ≤ 10−3. Then whenever B ⊆M,
one has

N0,t(B) = N ∗0,t(B) +O(MP−6−τQ30−2t),

for some positive number τ .

Proof. Suppose that (α, β) ∈M(q, a, b) ⊆M. Then by Lemma 5.1, we have the estimate

|Fp(γi)− Ξi(α, β; p)| � P δM5/2 (i = 1, 2).

On substituting into (4.2), we find that

|N0,t(B)−N ∗0,t(B)| � P 4δM10T0 + P 2δM5(T1 + T2),

where

T0 =
∑

M<p≤2M

∫∫
[0,1]2

|f(p5γk)f(p5γ`)|15−tdα dβ,

and for i = 1, 2, we write

Ti =
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
[0,1]2

|Fp(γi)|2|f(p5γk)f(p5γ`)|15−tdα dβ.
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A change of variables reveals that

T0 �M

∫∫
[0,1]2

|f(ξ)f(ζ)|15−tdξ dζ.

Thus, as in the argument leading to (2.25), we find that

T0 �MQ20.3503−2t.

On the other hand, since c2 = d1 = 0, it is apparent that Ti (i = 1, 2) is a mean value of
the type estimated in Lemma 2.5, whence

Ti � PMQ20.3517−2t (i = 1, 2).

We therefore conclude that

|N0,t(B)−N ∗0,t(B)| � P 4δM11Q20.3503−2t + P 1+2δM6Q20.3517−2t,

and the desired conclusion follows from (2.1) with a smattering of computation. �

Lemma 5.3. Suppose that t is a real number with 0 ≤ t ≤ 10−3. Then for each positive
number ε, one has

N ∗0,t([0, 1)2)�MP ε−6Q30−2t.

Proof. Under the hypotheses of the lemma, Theorem 2.1 shows that N0,t([0, 1)2) �
MP ε−6Q30−2t. The desired conclusion is therefore immediate from Lemma 5.2. �

It transpires that a non-trivial analysis is required to establish (5.3). In particular, we
need estimates for f(p5γi) that are valid over a somewhat larger range than has previously
been dealt with in the literature. Fortunately, such estimates are obtainable by a simple
modification of the argument of Lemma 7.2 of Vaughan and Wooley [16]. For ease of
comparison with [16], we temporarily adopt the notation

g(α) =
∑

x∈A(P,R)

e(αxk),

and write L = logP and L2 = log logP . The following provides the required extension of
the aforementioned lemma.

Lemma 5.4. Suppose that 2 ≤ R ≤ M ≤ P , and suppose also that a ∈ Z, q ∈ N and
α ∈ R satisfy (a, q) = 1 and q + P k|qα− a| ≤ TM. Then one has

g(α)� L3qε
(
P (q + P k|qα− a|)−1/2k + (PMR)1/2 + PR1/2(T/M)1/4

)
.

Proof. We apply the argument of the proof of Lemma 7.2 of [16], noting that in view of
the first part of Theorem 4.1 of Vaughan [15] the estimate (7.5) of [16] may be replaced
by the upper bound

S2 � S3 + L2UV +RU2qε
(
q + (4UV )k|qα− a|

)1/2
.

Moreover, one has U < P/V , so it follows from the hypothesis in the statement of the
lemma that

S2 � S3 + L2UV +RU2qε(TM)1/2. (5.8)
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It now suffices to note that the upper bound provided in (5.8) differs from that in (7.5) of
[16] only insofar as the third term of (5.8) is replaced by RU2q1/2+ε in (7.5) of [16]. Since
M≤ V <MR, one finds from (7.1) and (7.3) of [16] that

g(α)� L3qε
(
P (q + P k|qα− a|)−1/2k + (PMR)1/2

)
+ Σ,

where the new term Σ is bounded in the shape

Σ� L2(V L2RU
2qε(TM)1/2)1/2 � L3qεPR1/2(T/M)1/4,

and the claimed version of the lemma now follows. �

We are now in a position to obtain estimates for f(p5γi) when (α, β) ∈M.

Lemma 5.5. Suppose that (α, β) ∈ M(q, a, b) ⊆ M and that p is an integer with M <
p ≤ 2M . Write Λi = cia + dib, and suppose in addition that η is a sufficiently small
positive number, and that σ is a positive number with σ ≤ 1/10. Then the estimate

f(p5γi)�
Q(q, p5Λi)

1/10−σ

(q + P 5|qγi − Λi|)1/10−σ +Q1−δ/5

holds uniformly for q ≤ P δM5.

Proof. Write A = 4σ−1 and D = (q, p5Λi), and suppose first of all that

q + P 5|qγi − Λi| ≥ D(logQ)A. (5.9)

We seek to apply Lemma 5.4 with M = P δM5/2 and T = CM5/2, for some suitable
positive constant C. On writing q′ = q/D and Λ′i = p5Λi/D, we find that

q′ +Q5|q′p5γi − Λ′i| ≤ P δM5 + 32P 5(|ci(qα− a)|+ |di(qβ − b)|),

so that on taking C = 1+64(|ci|+ |di|), it follows from (3.6) that Lemma 5.4 applies with
M and T as above. We therefore deduce that

f(p5γi)� (logQ)3(q′)ε
(

Q

(q′ +Q5|q′p5γi − Λ′i|)1/10
+R1/2

(
P δ/2Q1/2M5/4 +Q1−δ/4)) ,

and the lemma now follows under the assumption (5.9). Now suppose instead that (5.9)
does not hold. Then by Lemma 8.5 of Vaughan and Wooley [16], one has

f(p5γi)�
(q′)εQ

(q′ +Q5|q′p5γi − Λ′i|)1/5
+Q exp(−c

√
logQ)(1 +Q5|p5(γi − Λi/q)|),

where the constant c may depend on η and A. Since (5.9) fails to hold, one sees easily
that the first term in the above expression dominates the second, and the lemma now
follows easily in this case as well. �

We are now ready to replace the functions f(p5γi) by the approximations given in
Lemma 5.5. For convenience, we take σ = 1/110 in our application of Lemma 5.5, this
being sufficient for our purposes. We also introduce the function ∆p(γi), which we define
for (α, β) ∈ [0, 1)2 by taking

∆p(γi) =
Q(q, p5Λi)

1/11

(q + P 5|qγi − Λi|)1/11
,
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when (α, β) ∈ M(q, a) ⊆ M, and otherwise by taking ∆p(γi) = 0. Here, as in the
statement of Lemma 5.5, we write Λi = cia + dib. The following lemma allows us to
replace f(p5γi) by ∆p(γi).

Lemma 5.6. Whenever B ⊆M, one has

N0,0(B)�
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

|Ξ1(p)Ξ2(p)|2(∆p(γk)∆p(γ`))
15dα dβ +MQ30P−6−τ ,

for some positive number τ .

Proof. Suppose that B ⊆ M, and let t be a positive number with t ≤ 10−3. By Lemma
5.5, one has for each prime p with M < p ≤ 2M ,

|f(p5γk)f(p5γ`)|t � (∆p(γk)
t +Qt(1−δ/5))(∆p(γ`)

t +Qt(1−δ/5)),

whence it follows from the trivial estimate ∆p(γi)� Q that

N ∗0,0(B)�
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

|Ξ1(p)Ξ2(p)|2|f(p5γk)f(p5γ`)|15−t(∆p(γk)∆p(γ`))
tdα dβ

+Qt(2−δ/5)N ∗0,t([0, 1)2).

If the second term on the right hand side of this inequality dominates the first, then
the proof of the lemma follows immediately from Lemma 5.3. Otherwise, following two
applications of Hölder’s inequality, one finds that

N ∗0,0(B)� N ∗0,0(B)1−t/15

( ∑
M<p≤2M

p≡−1 (mod 5)

∫∫
B

|Ξ1(p)Ξ2(p)|2(∆p(γk)∆p(γ`))
15dα dβ

)t/15

,

whence

N ∗0,0(B)�
∑

M<p≤2M
p≡−1 (mod 5)

∫∫
B

|Ξ1(p)Ξ2(p)|2(∆p(γk)∆p(γ`))
15dα dβ.

The conclusion of the lemma is now immediate from Lemma 5.2. �

Before concluding our pruning operation, we pause to evaluate a sum and an integral
that are critical to the remainder of our analysis. Define

S(q) =

q∑
a=1

q∑
b=1

(q,a,b)=1

q−30/11(q, cka+ dkb)
15/11(q, c`a+ d`b)

15/11. (5.10)

Also, when W denotes either M or M\N, define

I(q, a, b; W) =

∫∫
W(q,a,b)

(1 + P 5|γk − Λk/q|)−15/11(1 + P 5|γ` − Λ`/q|)−15/11dα dβ, (5.11)

where W(q, a, b) denotes M(q, a, b) when W = M, and W(q, a, b) denotes

M(q, a, b)\N(q, a, b)

when W = M\N. Here again, we write Λi for cia+ dib (i = k, `).
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Lemma 5.7. The function S(q) is multiplicative, and one has

S(q)� q−1/3.

Proof. Suppose that q and r are natural numbers with (q, r) = 1. Following the pattern
provided in Lemmata 2.10 and 2.11 of Vaughan [15], given integers a and b, we may apply
Euclid’s algorithm to obtain unique integers u, v, x, y, with 1 ≤ u, x ≤ r and 1 ≤ v, y ≤ q,
such that

a ≡ uq + vr (mod qr) and b ≡ xq + yr (mod qr).

Furthermore, one has (qr, a, b) = 1 if and only if (q, v, y) = 1 and (r, u, x) = 1. On
changing variables in (5.10) and noting that (qr, Cq + Dr) = (q,D)(r, C), it now follows
easily that S(qr) = S(q)S(r). This establishes that the function S(q) is multiplicative.

Suppose next that π is a prime number, and let h be a positive integer. Consider the
sum (5.10) with q = πh, and consider a fixed choice of a and b. Suppose that πA‖(cka+dkb)
and πB‖(c`a+ d`b). We may assume without loss of generality that A ≤ B, and further,
in view of the condition (πh, a, b) = 1 imposed in the sum (5.10), that π does not divide
b. On eliminating a between the congruences

cka+ dkb ≡ 0 (mod πA) and c`a+ d`b ≡ 0 (mod πB),

we therefore deduce that ckd`−dkc` ≡ 0 (mod πA). But rk 6= r`, and so the left hand side
of this congruence is non-zero. Consequently, one finds that πA is absolutely bounded in
terms of the coefficients ci and di (i = k, `). Next we note that c`a ≡ −d`b (mod πB).
Since d` 6= 0, one finds that (πB, d`) is absolutely bounded in terms of d`. But after divid-
ing through by (πB, d`) and fixing a, one sees that the residue class of b modulo πB/(πB, d`)
is determined. We therefore conclude from this discussion that when πA‖(cka+ dkb) and
πB‖(c`a+ d`b), then there is no loss of generality in supposing that πA � 1 and that the
total number of possible choices for a and b is O(π2h−B). We may thus infer that

S(πh)�
∑

A≤B≤h

π2h−Bπ−30h/11(πA+B)15/11 � h2π−4h/11.

The final assertion of the lemma now follows from the multiplicativity of S(q) already
established, since this yields S(q)� qε−4/11 � q−1/3. �

Lemma 5.8. Suppose that W is either M or M\N, and define Y by taking

Y =

{
1, when W = M, or when W = M\N and q > L,

L, when W = M\N and q ≤ L.

Then one has

I(q, a, b; W)� P−10Y −4/11.

Proof. Suppose that W is either M or M\N, and define Y as in the statement of the
lemma. Then on setting W = 0 when W = M, or when W = M\N and q > L, and
otherwise setting W = L, it follows by making a change of variables that

I(q, a, b; W)�
∫ ∞
−∞

∫ ∞
−∞

max{|ξ|,|ζ|}≥WP−5

(1 + P 5|ckξ + dkζ|)−15/11(1 + P 5|c`ξ + d`ζ|)−15/11dξ dζ.
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Since ckd` − c`dk 6= 0, a second change of variables reveals that

I(q, a, b; W)� P−10

∫ ∞
0

∫ ∞
0

max{µ,ν}≥λW

(1 + µ)−15/11(1 + ν)−15/11dµ dν,

where λ is a positive number depending at most on ci and di (i = k, `). Thus we conclude
that

I(q, a, b; W)� P−10

∫ ∞
λW

(1 + ω)−15/11dω � P−10Y −4/11,

as desired. �

As a final preparation for the impending pruning operation, we sharpen the information
concerning the function Ξ1(p)Ξ2(p) available to us on the major arcs M, paying particular
attention to those M(q, a, b) with q divisible by p. Recall from Lemma 3.2 (i) that c2 =
d1 = 0. It is therefore convenient to introduce the notation

S(q, a) =

q∑
r=1

e(ar5/q) (5.12)

and
S(q, a; p) = S(q, a)− p−1S(q, ap5).

Finally, we define the multiplicative function κ(q) on prime powers πh by taking

κ(πh) =

{
4π−1/2, when h = 1,

π−h/5, when h > 1.

Lemma 5.9. Suppose that p is a prime number with M < p ≤ 2M and p ≡ −1 (mod 5).
Write

Υp(q, a, b) =


κ(q), when p 6 |q,
p−2(ab, p)κ(p−1q), when p‖q,
0, when p2|q.

Then whenever (α, β) ∈M(q, a, b) ⊆M, one has

|Ξ1(α, β; p)Ξ2(α, β; p)| � P 2Υp(q, a, b).

Proof. Suppose that (α, β) ∈ M(q, a, b) ⊆ M. Then by making a trivial estimate for
vi(ξ, ζ;P ), one obtains from the definition of Ξi(α, β; p) the estimate

|Ξ1(p)Ξ2(p)| � P 2q−2S(q, c1a; p)S(q, d2b; p). (5.13)

Observe next that when M(q, a, b) ⊆M, then one has (q, a, b) = 1. Since p > M , we may
therefore suppose without loss of generality that (p, c1a) = 1. Also, since q ≤ P δM5, one
finds that p6 6 |q. Define j by taking pj = (q, p5), and write qj = qp−j. Then we deduce
from Lemma 4.5 of Vaughan [15] that

S(q, c1a) = S(qj, c1ap
4j)S(pj, c1aq

4
j ).

Moreover, by two changes of variable, one finds that

S(q, c1ap
5) = pjS(qj, c1ap

5−j) = pjS(qj, c1ap
4j).

Thus we deduce that

S(q, c1a; p) = S(qj, c1ap
4j)(S(pj, c1aq

4
j )− pj−1). (5.14)
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When j ≥ 2, it follows from Lemma 4.4 of [15] that S(pj, c1aq
4
j ) = pj−1, whence the

relation (5.14) yields

q−2S(q, c1a; p)S(q, d2b; p) = 0. (5.15)

Suppose next that j = 1. Since p ≡ −1 (mod 5), every element of (Z/pZ)× is a fifth-
power residue, and thus it follows that S(p, c1aq

4
1) = 0 (or see Lemma 4.3 of [15]). We

therefore deduce from (5.14) that

S(q, c1a; p) = −S(q1, c1ap
4),

and with little additional effort one also deduces that

|S(q, d2b; p)| ≤ (b, p)|S(q1, d2bp
4)|.

Thus we deduce from Lemma 4.3 and Theorem 4.2 of Vaughan [15] that

|q−2S(q, c1a; p)S(q, d2b; p)| ≤ |p−2(b, p)q−2
1 S(q1, c1ap

4)S(q1, d2bp
4)|

� p−2(b, p)

(
κ(q1)

κ((q1, c1ap4))

)(
κ(q1)

κ((q1, d2bp4))

)
.

But since (q, a, b) = 1, one has (q1, c1ap
4, d2bp

4)� 1, and hence

κ((q1, c1ap
4))κ((q1, d2bp

4))� κ(q1).

We therefore conclude that in this case

|q−2S(q, c1a; p)S(q, d2b; p)| � p−2(b, p)κ(q1). (5.16)

Finally, when j = 0, it follows by a change of variable that

S(q, c1a; p)S(q, d2b; p) = (1− 1/p)2S(q, c1a)S(q, d2b),

and we find, as in the treatment of the case j = 1 above, that

|q−2S(q, c1a; p)S(q, d2b; p)| � κ(q). (5.17)

The conclusion of the lemma follows immediately on collecting together (5.15)–(5.17),
and substituting into (5.13). �

Our collection of estimates now assembled, the end of the pruning process lies within
our grasp. We begin by estimating N0,0(M), noting that with W = M, it follows from
Lemmata 5.6 and 5.9 that

N0,0(W)� Q30P 4
∑

M<p≤2M
p≡−1 (mod 5)

∑
q≤P δM5

p26 | q

Θp(q) +MQ30P−6−τ , (5.18)

for some positive number τ , where

Θp(q) =

q∑
a=1

q∑
b=1

(q,a,b)=1

Υp(q, a, b)
2I(q, a, b; W)mp(q, a, b),

and

mp(q, a, b) = q−30/11(q, p5(cka+ dkb))
15/11(q, p5(c`a+ d`b))

15/11.
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Suppose first that p‖q, and write q1 = p−1q. Then by Lemma 5.8 and the definition of
Υp(q, a, b), we have

Θp(q)� p−4κ(q1)2P−10

q∑
a=1

q∑
b=1

(q,a,b)=1

(p, ab)2q
−30/11
1 (q1, cka+ dkb)

15/11(q1, c`a+ d`b)
15/11.

On making use of Lemma 5.7, one finds that the contribution to the double sum arising

from those terms with p|a or p|b is at most p3S(q1) � p3q
−1/3
1 , while the corresponding

contribution arising from those terms with (p, ab) = 1 is at most p2S(q1)� p2q
−1/3
1 . Thus

we deduce that

Θp(q)� p−1P−10κ(q1)2q
−1/3
1 .

It follows that the contribution to (5.18) arising from those terms with p‖q is of order

Q30P−6M−1
∑

M<p≤2M

∞∑
q1=1

κ(q1)2q
−1/3
1 � P−6Q30

∏
π prime

(1 + 19π−4/3)

� P−6Q30.

Suppose next that p 6 |q. In this case Lemma 5.8 and the definition of Υp(q, a, b) lead to
the upper bound

Θp(q)� κ(q)2P−10S(q).

On recalling Lemma 5.7, it follows that the contribution to (5.18) arising from those terms
with p 6 |q is of order

Q30P−6
∑

M<p≤2M

∞∑
q=1

κ(q)2q−1/3 �MQ30P−6(logP )−1
∏

π prime

(1 + 19π−4/3)

�MQ30P−6(logP )−1.

We therefore deduce from (5.18) and the conclusion of the previous paragraph that

N0,0(M)�MQ30P−6(logP )−1,

whence by (4.7),

N0,0([0, 1)2) = N0,0(M) +N0,0(m)�MQ30P−6(logP )−1.

This confirms the first of the estimates recorded in (5.3).
Turning our attention next to N0,0(M\N), we conclude from Lemmata 5.6 and 5.9 that

when W = M\N, the estimate (5.18) again holds. The analysis of the contribution to
(5.18) arising from those terms with p‖q is identical in this case to that above, and so
we concentrate on the terms with p 6 |q. In such cases, Lemma 5.8 and the definition of
Υp(q, a, b) establish that

Θp(q)� κ(q)2P−10Y −4/11S(q),
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where Y is defined as in the statement of Lemma 5.8. On recalling Lemma 5.7, it now
follows that the contribution to (5.18) arising from those terms with p 6 |q is of order

Q30P−6
∑

M<p≤2M

(
L−4/11

∞∑
q=1

κ(q)2q−1/3 +
∑
q>L

(q/L)1/15κ(q)2q−1/3
)

�MQ30P−6(logP )−1L−1/15
∏

π prime

(1 + 19π−19/15)

�MQ30P−6(logP )−1L−1/15.

On recalling our comments concerning the terms in (5.18) with p‖q, we therefore conclude
that

N0,0(M\N)�MQ30P−6(logP )−1−τ ,

for some positive number τ . This confirms the second of the estimates recorded in (5.3)
and completes our pruning operation.

We summarise the deliberations of this section in the form of a lemma.

Lemma 5.10. For some positive number τ , one has

N (n)�MP−6Q30(logP )−1−τ .

Proof. The desired conclusion is immediate from (4.7) and the discussion surrounding
(5.3) above, since n is the union of M\N and m. �

6. A Narrow Set of Major Arcs

Aficionados of the circle method will recognize that the arcs comprising the set N are
sufficiently few and narrow that an essentially routine analysis will suffice. We begin by
recording some notation. Recall the definitions of Si(q, a, b) and vi(ξ, ζ;B) from (5.4) and
(5.6). Further, define the functions Wi(α, β) for 1 ≤ i ≤ 4 and wj(α, β) for 5 ≤ j ≤ 34 by
taking

Wi(α, β) = q−1Si(q, a, b)vi(α− a/q, β − b/q;P ) (6.1)

and
wj(α, β) = (pq)−1Sj(q, a, b)vj(α− a/q, β − b/q;Qp), (6.2)

when (α, β) ∈ N(q, a, b) ⊆ N, and otherwise by taking Wi(α, β) = 0 and wj(α, β) = 0.
The functions Wi(α, β) and wj(α, β) provide major arc approximations to Fp(γi) and
f(p5γj), as the following lemma demonstrates.

Lemma 6.1. When p is a prime with M < p ≤ 2M , one has

sup
(α,β)∈N

|Fp(γi)− (1− 1/p)Wi(α, β)| � L2 (1 ≤ i ≤ 4)

and, for a certain positive number c depending at most on η,

sup
(α,β)∈N

|f(p5γj)− cwj(α, β)| � QL−10 (5 ≤ j ≤ 34).

Proof. When (α, β) ∈ N(q, a, b) ⊆ N and M < p ≤ 2M , one has p > M > L ≥ q, so that
by a change of variable, the consequent coprimality of p and q ensures that

Si(q, ap
5, bp5) = Si(q, a, b) (1 ≤ i ≤ 34), (6.3)



ON PAIRS OF DIAGONAL QUINTIC FORMS 25

and the first conclusion of the lemma now follows instantly from Lemma 5.1 on noting
that when (α, β) ∈ N(q, a, b) ⊆ N, one has

qε(q + P 5|qα− a|+ P 5|qβ − b|)1/2 � L1+ε � L2.

Next, from Lemma 8.5 of Wooley [18] (see also Lemma 5.4 of Vaughan [14]) it follows
that there exists a positive number c, depending only on η, such that whenever (α, β) ∈
N(q, a, b) ⊆ N, one has

f(p5γj) = cq−1Sj(q, ap
5, bp5)vj(p

5(α− a/q), p5(β − b/q);Q)

+ O

(
Q

(logQ)1/4
(q +Q5p5|qα− a|+Q5p5|qβ − b|)

)
.

By employing (5.7) and (6.3), we find that when M < p ≤ 2M and (α, β) ∈ N, one has

|f(p5γj)− cwj(α, β)| � QL2(logQ)−1/4 � QL−10.

This completes the proof of the lemma. �

We are now prepared to replace the major arc contribution by the product of a truncated
singular series and a truncated singular integral. To this end, we write

T (q, a, b) = q−34

34∏
i=1

Si(q, a, b), (6.4)

up(ξ, ζ) =
4∏
i=1

vi(ξ, ζ;P )
34∏
j=5

vj(ξ, ζ;Qp), (6.5)

and then define

S(L) =
∑

1≤q≤L

q∑
a=1

q∑
b=1

(q,a,b)=1

T (q, a, b),

J(L) =
∑

M<p≤2M
p≡−1 (mod 5)

p−30(1− 1/p)4

∫∫
[−LP−5,LP−5]2

up(ξ, ζ) dξ dζ.

Lemma 6.2. One has

N (N) = c30S(L)J(L) +O(MP−6Q30(logP )−1−τ ),

for some positive number τ .

Proof. On making use of the estimates from Lemma 6.1, one finds that whenever (α, β) ∈
N, one has∣∣∣∣∣

4∏
i=1

Fp(γi)
34∏
j=5

f(p5γj)− c30(1− 1/p)4

4∏
i=1

Wi(α, β)
34∏
j=5

wj(α, β)

∣∣∣∣∣� P 4Q30L−10.
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But on recalling (5.1), one finds that the measure of N is O(L5P−10), and hence it follows
that ∣∣∣∣∣ ∑

M<p≤2M
p≡−1 (mod 5)

∫∫
N

4∏
i=1

Fp(γi)
34∏
j=5

f(p5γj) dα dβ − c30S(L)J(L)

∣∣∣∣∣
� (L5P−10)(P 4Q30L−10)

∑
M<p≤2M

1.

The desired conclusion therefore follows from the prime number theorem. �

Before completing the singular series and singular integral to infinity, it is convenient to
remark on some simple estimates for Si(q, a, b) and vj(ξ, ζ;B). Observe first that in view of
Lemma 3.2 (ii), one may relabel the indices i for 1 ≤ i ≤ 34 so that for 1 ≤ i ≤ 17 the two
coefficient ratios r2i−1 and r2i are distinct. But then a change of variables demonstrates
that

q∑
a=1

q∑
b=1

(q,a,b)=1

∣∣S2i−1(q, a, b)S2i(q, a, b)
∣∣h ≤ q∑

u=1

q∑
v=1

(q,u,v)≤λ

∣∣S(q, Ciu)S(q,Div)
∣∣h,

where λ, Ci and Di are positive integers depending only on c2i−1, c2i, d2i−1 and d2i, and
where S(q, a) is the exponential sum defined in (5.12). But in view of Theorem 4.2 of
Vaughan [15], one has

S(q, a)� q4/5(q, a)1/5,

so that whenever (q, u, v)� 1, just as in the proof of Lemma 5.9, one has that

S(q, Ciu)S(q,Div)� q8/5(q, u)1/5(q, v)1/5 � q9/5. (6.6)

Suppose that the indices have been arranged as in the previous paragraph. Then by
making a suitable change of variables, and assuming that B and B′ are large real numbers
with B � B′, one finds as in the proof of Lemma 5.8 that∫ ∞

0

∫ ∞
0

max{ξ,ζ}≥H

∣∣v2i−1(ξ, ζ;B)v2i(ξ, ζ;B′)
∣∣hdξ dζ � ∫ ∞

0

∫ ∞
0

max{µ,ν}≥λH

∣∣v(Eiµ;B)v(Fiν;B′)
∣∣hdµ dν,

where λ, Ei and Fi are positive numbers depending only on c2i−1, c2i, d2i−1 and d2i, and
where we write

v(β;T ) =

∫ T

0

e(βγ5) dγ.

But from Theorem 7.3 of Vaughan [15], for example, one has

v(β;T )� T (1 + |β|T 5)−1/5,

and hence

|v(Eiµ;B)v(Fiν;B′)| � BB′(1 + |µ|B5)−1/5(1 + |ν|(B′)5)−1/5. (6.7)

We now complete the truncated singular series S(L) to the series

S =
∞∑
q=1

q∑
a=1

q∑
b=1

(q,a,b)=1

T (q, a, b),
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and extend the truncated singular integral J(L) to the infinite integral

J =
∑

M<p≤2M
p≡−1 (mod 5)

p−30(1− 1/p)4

∫∫
[−∞,∞]2

up(ξ, ζ) dξ dζ.

Lemma 6.3. One has

S−S(L)� L−2/5 and J − J(L)�MP−6Q30(logP )−1L−2.

Proof. Arranging the indices i as in the preamble to this lemma, we obtain by an appli-
cation of Hölder’s inequality the upper bound

S−S(L) =
∑
q>L

q∑
a=1

q∑
b=1

(q,a,b)=1

q−34

34∏
i=1

Si(q, a, b)

≤
∑
q>L

17∏
i=1

(
q∑

a=1

q∑
b=1

(q,a,b)=1

q−34
∣∣S2i−1(q, a, b)S2i(q, a, b)

∣∣17

)1/17

.

Then in view of the discussion leading to (6.6), we find that

S−S(L)�
∑
q>L

q∑
a=1

q∑
b=1

q−17/5 � L−2/5,

as desired.
Proceeding similarly in our treatment of J(L), we now apply Hölder’s inequality in

combination with (6.7) to deduce that

J − J(L) =
∑

M<p≤2M
p≡−1 (mod 5)

p−30(1− 1/p)4

∫ ∞
−∞

∫ ∞
−∞

max{|ξ|,|ζ|}≥LP−5

4∏
i=1

vi(ξ, ζ;P )
34∏
j=5

vj(ξ, ζ;Qp) dξ dζ

�M−29(logP )−1

∫ ∞
0

∫ ∞
0

max{ξ,ζ}�LP−5

P 34(1 + ξP 5)−17/5(1 + ζP 5)−17/5dξ dζ

� P 34M−29(logP )−1(P−10L−12/5),

and the desired conclusion follows once again, on recalling that PM−1 = Q. �

The proof of our main theorem is now rapidly completed. We see from the argument
of the proof of Lemma 6.3 that both S and J are absolutely convergent. In particular,
it follows from the theory familiar to practitioners of the circle method (see for example
§2.6 of Vaughan [15], or §10 of Davenport and Lewis [9]) that S may be written as an
absolutely convergent infinite product S =

∏
p

$p, where

$p = lim
h→∞

p−32hM(ph),
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and where M(ph) denotes the number of solutions of the pair of congruences

34∑
i=1

cix
5
i ≡

34∑
i=1

dix
5
i ≡ 0 (mod ph)

with 1 ≤ xi ≤ ph. In view of Lemma 3.2 (iv), one finds via an application of Hensel’s
Lemma (as in Lemma 6.7 of [18], for example) that $p > 0 for all primes p. Moreover,
when p is large, the argument of the proof of Lemma 2.12 of [15], together with the
discussion leading to (6.6), shows that

M(ph) = p32h(1 +O(p−7/5)),

whence $p = 1 +O(p−7/5). Consequently, one may conclude that

S =

(∏
p≤p0

$p

)(∏
p>p0

$p

)
,

where p0 is chosen large enough so that $p ≥ 1− p−6/5 for p > p0, and hence

S�
∏
p>p0

(1− p−6/5)� 1. (6.8)

As for the singular integral J , we observe that∫∫
[−∞,∞]2

up(ξ, ζ) dξ dζ =

∫∫
[−∞,∞]2

∫
D

e(ξL1(γ) + ζL2(γ)) dγ dξ dζ,

where we write

L1(γ) =
34∑
i=1

ciγ
5
i and L2(γ) =

34∑
i=1

diγ
5
i ,

and where D denotes the box [0, P ]4×[0, Qp]30. Put µ = P 5ξ and ν = P 5ζ, and substitute
also λi = (P−1γi)

5 for 1 ≤ i ≤ 34. Then with these changes of variables, we discover that∫∫
[−∞,∞]2

up(ξ, ζ) dξ dζ = 5−34P 24

∫∫
[−∞,∞]2

∫
D′

e(µL1(λ) + νL2(λ))

(λ1 · · ·λ34)4/5
dλ dµ dν,

where
L1(λ) = c1λ1 + · · ·+ c34λ34 and L2(λ) = d1λ1 + · · ·+ d34λ34,

and where D′ = [0, 1]4 × [0, (p/M)5]30. The equations L1(λ) = L2(λ) = 0 define a 32-
dimensional linear space, which passes through the point (η5

1, . . . , η
5
34). Moreover, Lemma

3.2 (iv) ensures that the latter point lies in the interior of D′. Applying Fourier’s integral
formula twice, in the shape

lim
λ→∞

∫ T

−T

∫ λ

−λ
V (t)e(tω) dω dt = V (0),

we therefore obtain∫∫
[−∞,∞]2

up(ξ, ζ) dξ dζ � P 24

∫
D′

L1(λ)=L2(λ)=0

(λ1 · · ·λ34)−4/5 dλ3 · · · dλ34 � P 24,
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whence ∑
M<p≤2M

p≡−1 (mod 5)

p−30(1− 1/p)4

∫∫
[−∞,∞]2

up(ξ, ζ) dξ dζ � P 24
∑

M<p≤2M
p≡−1 (mod 5)

p−30(1− 1/p)4.

The prime number theorem for arithmetic progressions therefore gives the lower bound

J �M−29(logP )−1P 24 = MP−6Q30(logP )−1. (6.9)

On arranging the conclusions of Lemmata 6.2 and 6.3 in concert with the lower bounds
(6.8) and (6.9), we finally deduce that

N (N) = c30(S +O(L−2/5))(J +O(MP−6Q30(logP )−1L−2))

+O(MP−6Q30(logP )−1−τ )

�MP−6Q30(logP )−1.

Thus, in view of the bound recorded in Lemma 5.10, we may conclude that

N ([0, 1)2) = N (N) +N (n)�MP−6Q30(logP )−1.

Since N ([0, 1)2)→∞ as P →∞, the conclusion of Theorem 1 follows at last.
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